Threshold single index regression model from high-dimensional data
نویسندگان
چکیده
منابع مشابه
Methods for regression analysis in high-dimensional data
By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...
متن کاملHigh dimensional single index models
This paper addresses the problem of fitting nonlinear regression models in high-dimensional situations, where the number of predictors, p, is large relative to the number of observations, n. Most of the research in this area has been conducted under the assumption that the regression function has a simple additive structure. This paper focuses instead on single index models, which are becoming ...
متن کاملSingle index quantile regression for heteroscedastic data
Quantile regression (QR) is becoming increasingly popular due to its relevance in many scientific investigations. Linear and nonlinear QR models have been studied extensively, while recent research focuses on the single index quantile regression (SIQR) model. Compared to the single index mean regression problem, the fitting and the asymptotic theory of the SIQR model are more complicated due to...
متن کاملIsotonic single-index model for high-dimensional database marketing
While database marketers collect vast amounts of customer transaction data, its utilization to improve marketing decisions presents problems. Marketers seek to extract relevant information from large databases by identifying signi6cant variables and prospective customers. In small databases, they could calibrate logistic regression models via maximum-likelihood methods to determine signi6cant v...
متن کاملForward Selection and Estimation in High Dimensional Single Index Model
We propose a new variable selection and estimation technique for high dimensional single index model with unknown monotone smooth link function. Among many predictors, typically, only a small fraction of them have significant impact on prediction. In such a situation, more interpretable models with better prediction accuracy can be obtained by variable selection. In this article, we propose a n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SCIENTIA SINICA Mathematica
سال: 2019
ISSN: 1674-7216
DOI: 10.1360/scm-2018-0618